Apply Kalman Filter in Financial Time Series
Final Project for EE616 Signal Detection & Estimation

Xingzhong Xu

Department of Electrical & Computer Engineering
Stevens Institute of Technology

April 29, 2012
Financial time series are well-known non-stationary.

There’s no perfect prediction model for such time series.

A fundamental assumption is that the underlying series are driven by some hidden control or variables.

A good approximate model should,
- demonstrates the hidden effects (state-space model)
- provide a good prediction performance (mean square error)
- computationally efficient (recursive filtering)

In this project, I will use dynamic state-space system to model the financial time series, and then use Kalman filter to efficiently make prediction.
Review Kalman Filter

- Under a Gaussian-Markov state model \((u[n] \sim \mathcal{N}(0, Q))\)
 \[s[n] = As[n-1] + Bu[n] \]

- and Bayesian linear observation model \((w[n] \sim \mathcal{N}(0, C[n]))\)
 \[x[n] = H[n]s[n] + w[n] \]

- a Kalman filter is a recursive (prediction & correction only use present input \(x[n]\) and previous output \(\hat{s}[n-1|n-1]\), \(K[n]\) is Kalman Gain \(^1\))
 \[\hat{s}[n|n-1] = A\hat{s}[n-1|n-1] \]
 \[\hat{s}[n|n] = \hat{s}[n|n-1] + K[n](x[n] - H[n]\hat{s}[n|n-1]) \]

- MMSE estimator (\(M\) are minimum mean square error matrix).
 \[M[n|n-1] = AM[n-1|n-1]A^T + BQB^{-1} \]
 \[M[n|n] = (I - K[n]H[n])M[n|n-1] \]

\(^1\)
\[
\]
Basic Model

In finance, compare to the assets price p, the rate of return r tend to behavior more stationary. We denote r as

$$r[n] = \log(p[n]) - \log(p[n - 1])$$

Although the true value of $r[n]$ is unknown, we could always observer it in noise market by,

$$R[n] = r[n] + w[n] \quad w[n] \sim \mathcal{N}(0, \sigma_w^2)$$

In this project, I will analyzing two models with different assumptions as follows

- r is constant.
- r is mean reverting.
Constant r

We firstly assume the r is constant, then,

$$r[n] = r[n - 1] + u$$

We further assume the observation and process noises are WSS ($u \sim \mathcal{N}(0, \sigma_u^2)$, $w \sim \mathcal{N}(0, \sigma_w^2)$) and $\sigma_u^2 \ll \sigma_w^2$.

Recall the Kalman filter discussion, we have

$$\hat{r}[n|n - 1] = \hat{r}[n - 1|n - 1]$$
$$M[n|n - 1] = M[n - 1|n - 1] + \sigma_u^2$$
$$K[n] = \frac{M[n|n - 1]}{\sigma_w^2 + M[n|n - 1]}$$
$$\hat{r}[n|n] = \hat{r}[n|n - 1] + K[n](R[n] - \hat{r}[n|n - 1])$$
$$M[n|n] = (1 - K[n])M[n|n - 1]$$
In the above model, we assume σ_u, σ_w and μ are constant parameters.

Now we estimate them from real data.

Recall the Gaussian Linear assumption and $\sigma_u^2 \ll \sigma_w^2$,

\[
\begin{align*}
R & \sim \mathcal{N}(r, \sigma_w^2 I) \\
r & \sim \mathcal{N}(\mu, \sigma_u^2 I) \\
R & \sim \mathcal{N}(\mu, (\sigma_w^2 + \sigma_u^2) I) \\
R & \sim \mathcal{N}(\mu, \sigma_w^2 I)
\end{align*}
\]

The MLE of $\gamma = \begin{bmatrix} \sigma_w & \mu \end{bmatrix}^T$ is given by,

\[
\arg \max_{\gamma} L(\gamma | R)
\]
Constant r - Parameter Estimation

\[R \sim \mathcal{N}(\mu, \sigma_w^2 I) \]

\[
\log L(\gamma | R) = \log f(R, \gamma)
\]

\[
= \log \frac{\exp\left(-\frac{\sum_n (R[n] - \mu)^2}{2\sigma_w^2}\right)}{(2\pi \sigma_w)^{N/2}}
\]

\[
= \frac{N}{2} \log(2\pi \sigma_w^2) + \frac{\sum_n (R[n] - \mu)^2}{2\sigma_w^2}
\]

\[
\frac{\partial \log L(\gamma | R)}{\partial \mu} = \frac{\sum_n (R[n] - \mu)}{\sigma_w^2}
\]

(set to 0)

\[
\hat{\mu} = \frac{1}{N} \sum_n R[n]
\]

\[
= \bar{R}[n] \quad \text{(MLE of } \mu)\]
\[
\frac{\partial \log L(\gamma|R)}{\partial \sigma_w^2} = \frac{N}{2\sigma_w^2} - \sum_n (R[n] - \mu)^2 \quad \text{(set to 0)}
\]

\[
\hat{\sigma}_w^2 = \frac{1}{N} \sum_n (R[n] - \mu)^2
\]

\[
= \frac{1}{N} \sum_n (R[n] - \bar{R}[n])^2 \quad \text{(MLE of } \sigma_w^2 \text{)}
\]

\[
\hat{\gamma} = \left[\frac{1}{N} \sum_n (R[n] - \bar{R}[n])^2 \right]
\]
Exxon Mobil Corporation (NYSE:XOM) historical daily price and return from 2008-01-23 to 2012-04-26.

Use first 80% data to find the MLE of $\gamma = \begin{bmatrix} 0.003936\% & 0.0435\% \end{bmatrix}^T$.
Use latest 20% data to recursively evaluate the $\hat{r}[n|n-1]$.

![Graph showing daily price and predicted price, as well as daily return and predicted return.](image)
Mean-reverting Model

- Now we relax r’s constant assumption.
- Let us assume $\mathbb{E}(r_n) = \mu$, and r is mean-reverting.

$$r_n - r_{n-1} = \alpha(\mu - r_{n-1}) + u$$

- Then the state space model will be given by

$$r_n = (1 - \alpha)r_{n-1} + \alpha\mu + u$$

$$\mathbb{E}(r) = \mu$$

$$\text{var}(r) = \frac{\sigma_u^2}{2\alpha - \alpha^2}$$

- The observation model will be given by

$$R_n = r_n + w$$
Mean-reverting Model - 100 sample simulation

\[\mu = 0.1 \quad \sigma_u^2 = 0.1 \]
In the above model, we assume the α, σ_w, σ_u and μ are unknown constant parameters.

According to the linear Gaussian assumption,

$$R_n = r_n + w$$
$$= (1 - \alpha) r_{n-1} + \alpha \mu + u + w$$
$$= (1 - \alpha)(R_{n-1} - w) + \alpha \mu + u + w$$
$$= (1 - \alpha)R_{n-1} + \alpha \mu + u + \alpha w$$

which shows R_n is an autoregressive process AR(1).

We would like to obtain the MLE of $\gamma = [\alpha \ \sigma_w^2 \ \sigma_u^2 \ \mu]^T$,

$$\arg \max_{\gamma} L(\gamma|R)$$
Mean-reverting Model - Conditional MLE

\[R_n | R_{n-1} \sim \mathcal{N}((1 - \alpha)R_{n-1} + \alpha\mu, \sigma_u^2 + \alpha^2\sigma_w^2) \]

\[f(R_n | R_{n-1}, \gamma) = \frac{1}{\sqrt{2\pi(\sigma_u^2 + \alpha^2\sigma_w^2)}} \exp\left(-\frac{(R_n - (1 - \alpha)R_{n-1} - \alpha\mu)^2}{2(\sigma_u^2 + \alpha^2\sigma_w^2)}\right) \]

\[\log(f(R_n | R_{n-1}, \gamma)) = -\log(2\pi(\sigma_u^2 + \alpha^2\sigma_w^2)) - \frac{(R_n - (1 - \alpha)R_{n-1} - \alpha\mu)^2}{2(\sigma_u^2 + \alpha^2\sigma_w^2)} \]
Recall R is a stationary AR(1) process, we can assume R_1 as,

$$E[R_1] = \mu \quad \text{var}[R_1] = \frac{\sigma_u^2 + \alpha^2 \sigma_w^2}{2\alpha - \alpha^2}$$

$$R_1 \sim \mathcal{N}\left(\mu, \frac{\sigma_u^2 + \alpha^2 \sigma_w^2}{2\alpha - \alpha^2}\right)$$

$$f(R_1, \gamma) = \left(\frac{2\pi(\sigma_u^2 + \alpha^2 \sigma_w^2)}{2\alpha - \alpha^2}\right)^{-1/2} \exp\left(-\frac{(R_1 - \mu)^2(2\alpha - \alpha^2)}{2(\sigma_u^2 + \alpha^2 \sigma_w^2)}\right)$$

$$\log(f(R_1, \gamma)) = -\frac{1}{2} \log\left(\frac{2\pi(\sigma_u^2 + \alpha^2 \sigma_w^2)}{2\alpha - \alpha^2}\right) - \frac{(R_1 - \mu)^2(2\alpha - \alpha^2)}{2(\sigma_u^2 + \alpha^2 \sigma_w^2)}$$
Mean-reverting Model - Exact MLE

\[f(R_n, \ldots, R_1 | \gamma) = f(R_1, \gamma) \prod_{t=2}^{n} f(R_n | R_{n-1}, \gamma) \]

\[\log L(\gamma | R) = \log f(R_1, \gamma) + \sum_{t=2}^{n} \log f(R_t | R_{t-1}, \gamma) \]

\[= -\frac{1}{2} \log \left(\frac{2\pi(\sigma_u^2 + \alpha^2\sigma_w^2)}{2\alpha - \alpha^2} \right) - \frac{(R_1 - \mu)^2(2\alpha - \alpha^2)}{2(\sigma_u^2 + \alpha^2\sigma_w^2)} \]

\[- \sum_{t=2}^{n} \left(\log(2\pi(\sigma_u^2 + \alpha^2\sigma_w^2)) - \frac{(R_t - (1 - \alpha)R_{t-1} - \alpha\mu)^2}{2(\sigma_u^2 + \alpha^2\sigma_w^2)} \right) \]

\[= \log(2\alpha - \alpha^2) \left(\frac{2\alpha - \alpha^2}{2} \right) - \frac{n}{2} \log(2\pi(\sigma_u^2 + \alpha^2\sigma_w^2)) - \frac{(R_1 - \mu)^2(2\alpha - \alpha^2)}{2(\sigma_u^2 + \alpha^2\sigma_w^2)} \]

\[- \frac{1}{2(\sigma_u^2 + \alpha^2\sigma_w^2)} \sum_{t=2}^{n} (R_t - (1 - \alpha)R_{t-1} - \alpha\mu)^2 \]
Mean-reverting Model - Kalman filter

Notice that the log-likelihood function $\log L(\gamma|\mathbf{R})$ is a non-linear function, so there’s no exact analytical solution for MLE $\hat{\gamma}$. Here we use numerical method,

$$\arg \max_{\gamma} \log L(\gamma|\mathbf{R})$$

We then use MLE γ to configure a Kalman filter.

$$\hat{r}[n|n-1] = (1-\hat{\alpha})\hat{r}[n-1|n-1] + \hat{\alpha}\hat{\mu}$$
$$M[n|n-1] = (1-\hat{\alpha})^2 M[n-1|n-1] + \hat{\sigma}_u^2$$
$$K[n] = \frac{M[n|n-1]}{\hat{\sigma}_w^2 + M[n|n-1]}$$
$$\hat{r}[n|n] = \hat{r}[n|n-1] + K[n](\mathbf{R}[n] - \hat{r}[n|n-1])$$
$$M[n|n] = (1 - K[n])M[n|n-1]$$
Mean-reverting Model - 100 sample simulation

\[\mu = 0.1 \quad \sigma^2_u = 0.1 \quad \sigma^2_w = 0.01 \quad \alpha = 1.4 \]
Exxon Mobil Corporation (NYSE:XOM) historical daily price and return from 2008-01-23 to 2012-04-26.

Use first 80% data to find the MLE of
\[\gamma = \begin{bmatrix} 1.211 & 5.66 \times 10^{-4}\% & 4.15\% & 3.17 \times 10^{-3}\% \end{bmatrix}^T. \]
Mean-reverting Model - Application

- Use latest 20% data to recursively evaluate the $\hat{r}[n|n-1]$.

Graph 1:
- **X-axis:** Daily Price
- **Y-axis:** Predict Price
- **Legend:** Daily Return (blue plus symbols), Predict Return (red line)

Graph 2:
- **X-axis:** Daily Return
- **Y-axis:** Predict Return
- **Legend:** Daily Price (blue plus symbols), Predict Price (red line)
Mean-reverting model have better tracking error performance, especially when price change dramatically.
The financial time series in real applications are always non-stationary. So there’s no perfect model can fit them well.

I assume the daily return series are stationary, and thus using two state space model (constant and time-reverting) to model it separately.

Both models’ parameters were estimated (analytically or numerically) through maximizing its likelihood function.

Then based on the parameters, a configured Kalman filter is used to recursively predict and correct the underlying series.

Not surprisingly, a more complicated mean-reverting model have better prediction performance than the constant one.
Franco JCG. Maximum likelihood estimation of mean reverting processes. Real Options Practice. Onward Inc.

Paresh Date. Kalman Filtering in Mathematical Finance. CARISMA, Brunel University.

Eric Zivot. Estimation of ARMA Models. 2005