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Abstract

In this paper, a probabilistic framework is proposed to
represent high level semantic concepts of temporal visual
events. It is applied to sports videos to address the inference
of common sports tactics through multilevel probabilistic
parsing trees. In sports videos, a higher level concept typi-
cally consists of multiple lower level concepts. Such hierar-
chical relationships are usually apparent to human cogni-
tion, but their ambiguity and uncertainty are serious chal-
lenges to existing cognitive computing techniques. The pro-
posed framework is based on latent probabilistic context-
free grammar (LCFG), which assumes a generative rela-
tionship between the athletes’ behaviors and the underly-
ing tactics within sports videos. Furthermore, by jointly de-
signing the tactic grammars with a set of discriminative in-
termediate features, the optimal interpretation is obtained
through a modified CYK parsing algorithm. The classical
pick-and-roll attacking tactic in basketball game is studied
as the target tactic in our experimental work. The hierarchi-
cal parsing results demonstrate the unique capability of the
proposed method in analyzing the complex compositions of
such visual events.

1. Introduction

Understanding real-world temporal visual events in a
video sequence is a nontrivial technical challenge. Many
previous efforts have been focused on classification of seg-
mented video clips while ignoring long-term temporal and
logical relationships between consecutive concepts and sub-
concepts. Such a approach fails to consider some fun-
damentally important aspects in human cognitive process.
Firstly, semantic concepts are derived from both observa-
tions and domain knowledge. Any computational model
without encapsulating such knowledge is unlikely to per-
form robustly in real applications. Secondly, beyond certain
variations in observations, visual events are frequently con-
structed from key concepts and sub-concepts according to
certain underlying temporal and logical structures. Simply
modeling these conceptual primitives as independent ran-

dom occurrences or some first-order Markov process is in-
adequate to explore their inherent hierarchy.

In order to address these challenges in a unified frame-
work, in this paper, we propose a latent probabilistic
context-free grammar (LCFG) to better analyze temporal
visual events in real-world video sequences. The set of
domain knowledge is described in grammatical rules. The
context-free property simplifies the model construction and
parsing. The derived parsing tree is able to reveal the logical
hierarchy of the concepts in a probabilistic manner.

In this paper, the proposed method is specifically applied
to basketball videos to demonstrate its ability of describing
real-world sports tactics. In achieve this, we first introduce
a set of discriminative tactics features that can bridge higher
level concepts with low level athlete appearance and behav-
ior. Then we use LCFG and its derived inference framework
to hierarchically construct a single tactic model.

2. Related Works

High level visual semantic analysis is frequently applica-
tion specific. However, such task generally involves multi-
ple stages and components that may have been well studied
within different context. This section summarizes some of
the previous works that are related to the various aspects of
tactics modeling in sports videos.

2.1. Sports Video Analysis

In recent years, there are significant amount of studies
on sports video analysis from both academia and industry.
The advances in low level image processing and computer
vision have brought us many essential tools, which include
video segmentation [ 1 9], single or multiple athletes tracking
[18, 17, 10, 23], player identifications [14], and court recti-
fication [ 16, 10] etc. Some works directly use low level ath-
lete features to extract high level sports semantics [28, 29, 7]
and collect statistics for individual games [22].

Most existing sports analysis systems so far are concen-
trated on collecting athletes’ statistics and performances.
For example, there are commercial applications collecting
basketball stats for professional games.
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In contrast to most conventional computer vision appli-
cations, sports videos generally have more dynamics in mo-
tion, objects, and scene. Most of sports videos are captured
in motion, with crowded background, and heavy occlusions
among athletes. Therefore detecting and tracking athletes
in sports game is very challenge, which requires significant
amount of specialized design efforts[24].

On the other hand, sports videos also have certain inher-
ent structures. The games are played in pre-defined stan-
dard courts. The behaviors of athletes are not only driven
by physical properties and sports rules, but also guided by
the formations and tactics according to their personal skills
and team intentions. It is therefore desirable, especially for
team sports, to have more sophisticated tools that can poten-
tially explore the collaboration, formation and tactic among
athletes.

2.2. Space Time Model

In most video analysis works, space time models are es-
sential in exploring the underlying spatial and temporal re-
lationships. Hidden Markov Models (HMMs) and its vari-
ants are popular choices in such applications[2, 21, 12, 9].
The spatial appearance features may includes color or gra-
dient histogram, optical flow, and bag-of-feature etc. These
features can be simply aggregated to form higher dimen-
sional feature vectors, which frequently produce enhanced
performance. However, high dimensionality typically re-
quires more modeling and computation complexity. In this
paper, only color histogram is used to build the feature vec-
tor for athletes in games.

In common HMMs, the latent state variables are mostly
restricted to a first-order Markov relationship. When apply-
ing HMM:s to higher level concept modeling, there are two
major limitations. Firstly, the expressiveness of an HMM
is too shallow to characterize any complex domain knowl-
edge. All latent states are equal entities without any hier-
archy, and any prior knowledge on this process can only be
encapsulated in the transition and prior probabilities. Sec-
ondly, the latent states are essentially clusters in feature
spaces. There is no guarantee of true semantic meaning of
these states. Hence, this generated state sequence is fre-
quently hard to interpret.

2.3. Grammatical Model

Context-free grammar (CFG) models have been used in
gesture[5], action[20, 19] and event recognitions[l 1, 15,

]. As the extension of the Markov process, CFG can ex-
plicit express context-free logic in grammar rules. For high
level concepts modeling, especially in team sports, the ob-
jects of interests (i.e. athletes) are collaborating based on a
variety of well understood sports tactics. In this work, we
will encode such tactics into a set of CFG grammar rules.
By combining the traditional space time modeling and the

syntactic event construction, we propose a unified proba-
bilistic framework for describing and extracting high level
concepts from both observations and domain knowledge.

3. Sports Video Preparation

Our primary concern is syntactic modeling of high level
sports concepts. But as in typical computer vision applica-
tions, significant amount of video pre-processing is required
to support such high level analysis. Hence, in this section,
we summarize the preparation works and methods that we
specifically designed for broadcast sports videos.

3.1. Court Rectification

Commercial broadcast sports videos are typically pre-
sented through several cameras in fixed positions. Those
cameras are pre-positioned as close-up, court-views, and
commercial-views etc. Among all those positions, court-
views are most frequent and informative ones in the video.
However, unlike in surveillance scenario, the background
of the court-views video are usually in motion. Thus in or-
der to obtain the absolute position and trajectory of athletes
in the game, it requires a prior court rectification process.
Fortunately, the courts appear in the video are well defined.
Therefore, the court can be rectified by estimating the ho-
mograph perspective transformation between the court tem-
plate and its appearances.

The perspective transformation aims to project a list of
2-D coordinates to a 3-D perspective space. Suppose the
point p = [z, |7 on the court template will be projected
to its corresponding point p’ = [2’,3]T in the perspective
space. Such relationship can be determined by transforma-
tion matrix H through the perspective equation Eq.1,

' w T
yw| =H |y €))
w 1

where w, the scale factor, is set to be 1.

By collecting adequate pairs of (p,p’), H can be esti-
mated though least square method [16]. In our application,
the p’ are pre-defined on the court template. On the other
hand, the p are hidden and corrupted in the video frame.
Thus it requires a set of cleaning operations to eliminate
unwanted objects and color channels. In Fig. 1, we demon-
strate the methodology on a single frame. At the beginning,
the non-court floor colors have been eliminated to empha-
size the court structure. Then we filter out the small size
contours to eliminate the objects that might be blocking the
court. The estimation of homograph transformation is then
performed several iterations until it converges. The series
of H will also be used in the following steps to determine
the absolute positions of the athletes from their relative po-
sitions.
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Rectification

Perspective Court

Figure 1. Court rectification through iteratively matching the frame
contour and transformed court template.

3.2. Player Tracking

Detecting human objects in images and videos is a clas-
sical computer vision topic. Although athletes tend to have
more variations in appearance and motion compared to nor-
mal pedestrians, the fundamental techniques are quite simi-
lar [1, 4].

Most object tracking methods are based on certain time-
space models, which contain at least two individual steps.
Firstly, there is a probabilistic detector to estimate the like-
lihood that an object of interest appears at a given posi-
tion in a frame. Typically, the athelete of interest is char-
acterized in the feature spaces which commonly includes
color histograms[17], histogram of gradient[]3], and even
more advanced features from deformable part model[ 14,
26]. Secondly, the spatially detected objects are correlated
through a temporal model across consecutive video frames.
Such temporal correlation can be explore through mean-
shift, Kalman filter, particle filter or even more advanced
temporal state space solutions.

Since the athlete tracking is relatively independent to the
high level syntactic modeling. We adopted color histograms
with mean-shift algorithm to reduce the computational cost
while processing high definition sports videos. Fig.2 shows
the mean-shift athletes tracking steps and results in our ap-
plication. The rectified frames which came from the prior
step are used here to back-project the pre-defined two jersey
color histograms.

Notice that the trajectories we obtained in this section are
relative positions in the frames. In order to obtain the actual
positions and trajectories on court, we have to combine the
relative positions along with the previous rectification re-
sults H together through Eq.1.

Back-projection team 1

Mean-shift tracking Back-projection team 2

Figure 2. Mean-shift athletes tracking

4. Discriminative Tactic Features

In this section, we propose several tactic features based
on certain domain knowledge. Similar to the hidden states
in HMMs, the true underlying states can not be observed
directly from the video sequence. Hence, it requires a prob-
abilistic inference from the feature vectors to corresponding
states. From the video pre-processing steps introduced in
the previous section, we have already collected the trajec-
tory of each athletes in a game. We will then use these low
level inputs and our domain knowledge to construct some
intermediate concepts.

The following features which are specifically designed
for basketball sports will be used to discriminate the latent
states in the grammatical model.

4.1. Defence Scores

A majority of basketball tactics aim to create miss de-
fence (open shot) for specific attacker or mismatch the orig-
inal assigned defenders during a period of time. By mod-
eling the current defence quality, we will not only be able
to measure the quality of the tactic being deployed in the
game, but also construct a high level feature to distinguish
the tactic. A good defence for an attacker means the de-
fender stands in a good distance and direction towards to
the attacker. The distance can be measured simply in Eu-
clidean distance, and the good direction should be pointing
from the attacker to the hoop.

We initially transform the athlete trajectories into the
hoop centered polar space as (x,y) — (r,6). Then the
distance as well as the direction can be easily measured
through §r and 66 in polar space. In Eq.2, a Gaussian kernel
is used to measure the defence quality between the preferred
model parameterized by (7, 0) and the current athlete pair in
the frame.

D(6r, 6d) = exp <_ (M . )) @)

202 252

For a given attacker, the quality of the defence for each
different defender positions can be visualized in Fig.3.
Good defence positions are always laid between the attacker
and the hoop. The more defender misses the good position,
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The defense score distribution given the attacker's position at (0,0)

100

150—150

Figure 3. The heat map of defence scores for different defender
positions. Attacker is assumed at position (0,0). Hoop direction
is along the positive Y axis.

the less the defense quality becomes, especially when the
attacker has already surpassed the defender.

4.2. Picker Selection

Besides modeling the defence, the cooperation among
teammates is also a common and important feature in team
sports. We consider the cooperation in a pick-and-roll bas-
ketball game. The picker in the tactic is an athlete whom
is picked by the ball handler to block his defender while
dribbling the ball.

Initially the picker will be standing roughly around the
ball-handler’s 2 and 10 o’clock positions. Similar to the
way we measure the defence based on the relative positions
of the athletes, we will once again use a Gaussian kernel to
mimic the picker selection. Since there are generally two
potential sweet points for picking the picker, we will use
two component Gaussian mixture for this feature. In Eq.3,
Gaussian mixture is used to here to measure the probability
of a teammate positioned at (dr,dd) acting as the picker
given the ball-handler’s initial position at (0, 0). This model
is parametrized by (w,#,d), and g(|) is standard Gaussian
function.

2
Pk(or,0d) = > wig(dr, dd|i;, d;) 3)

=1

For a given ball-handler, the probability of a teammate
acting as the picker in this tactic is approximated and vi-
sualized in Fig.3. The closer the teammate is to those two
sweet spots, the higher the probability that he will be acting
as a picker will become. When the ball handler has already
surpassed his teammate, this teammate will almost impos-
sible to be selected as a picker to screen the defender.

The picker score distribution given the attacker's position at (0,0)

-100
150-150

Figure 4. The heat map of picker scores for different teammate po-
sitions. Ball-handler is assumed at position (0, 0). Hoop direction
is along the positive Y axis.

4.3. Other Features

We have presented the methods that construct two in-
termediate features from the basketball domain knowledge.
Although we do use other tactic features (e.g. average ath-
letes distances) in this work, it is not necessary to enumer-
ate all of them. The principle idea is straightforward, we are
trying to build discriminative features from domain knowl-
edge that can best distinguish the target concepts and sub-
concepts among each others. For example, in Fig.5, we
show the features for two pairs of athletes in a real pick-
and-roll scenario. Both features can well follow the be-
haviors and logic of the ongoing tactic. Initially, the ball-
handler is looking for a good picker who has a relatively
high picking score. Then, after the picker stepped in and the
tactic moves on, the ball-handler attracts both defenders’ at-
tention, which gives the picker a miss defence opportunity.
This opportunity is well quantified from the significant de-
fence score drop in the tactic feature space.

5. Syntactic Method
5.1. Latent Context-free Grammar

According to formal language theory, regular grammar
is equivalent to automata and Markov chain under certain
restrictions [8]. Any rule in regular grammar essentially
characterize the left to right symbol generation process.
In Chomsky hierarchy, context-free grammar (CFG) is a
super-set of regular grammar. It is therefore straightfor-
ward to use CFG to model any process that can be mod-
eled through regular grammar, i.e. Markov chain. In addi-
tion, CFG as well as its probabilistic extension, probabilis-
tic context-free grammar (PCFG), possess more represen-
tation power in data modeling. PCFG extends CFG in the
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Figure 5. Likelihood evolution through time

way similar to how HMM extends regular grammar. The
context-free property allows the grammar to create nested,
long distance pairwise correlations among symbols in data
strings. Traditional PCFG have been widely used in natural
language processing, biomedical analysis [6, 25].

In order to apply CFG to continuous observation sam-
ples, the deterministic terminal symbols have to be modified
to become latent terminal symbols. They are similar to the
hidden states in HMMs. With such modification, we here
introduce the latent context-free grammar (LCFG) frame-
work. In this work, we use Gaussian terminals in LCFG.
An LCFG model is defined as G = (N, T, R, S, p) where,

e N is a finite set of non-terminal symbols.

e T is a finite set of parameterized Gaussian multivariate
terminals.

e R is a finite set of the rules of the form
X-1Y, .. .Y,
where X ¢ NandY € (NUT) fori =1,2,...,n.

e S € N is the start non-terminal of the model.

p is the set of probabilities of every production rules
(o — B) € R. For any X € N, there is naturally a
probability constraint,

> pla—=p) =1
(a—=B)ER
a=X

Compared with the traditional PCFG, when the production
rules have a terminal symbol on the right hand side, the
Gaussian density f (x|, X) is used to model the probabil-
ity of the data sample x given terminal T'(p, 32).

A fundamental assumption in language modeling is that
the output symbols are generated by a series derivations
starting from the initial non-terminal S. LCFG is a proba-
bilistic generative model. Instead of using sequential states
paths as seen in HMMs, CFMs use parsing trees to track
the symbol derivation processes. Similar to HMM, there
are three basic problems for this dynamic data model.

e Alignment: what is an optimal alignment of an obser-
vation to a parameterized LCFG?

e Scoring: what is the probability of an observation
given a parameterized LCFG?

e Learning: how to estimate the probability parameters
for an LCFG?

In this work, we are focusing on the first problem, i.e.
what and how to find the optimum alignment of an observa-
tions series O given a parameterized G. This is equivalent
to the decoding problem in HMM. LCFG as well as HMM
are special cases of probabilistic graph models where the
conditional dependence are structured either by a tree struc-
ture, or by a chain structure. In HMM, the Viterbi algorithm
allows the belief recursively propagats from left to right.
Similarly, in LCFG, the CYK algorithm [3] is specially de-
signed to dynamically calculate the best alignment among
all possible parsing trees for a given model to generate O.

We modify the conventional CYK’s initialization step
to accommodate the emission distributions in LCFG. More
specifically, we define a quantity «(%, j, v) for a parsing sub-
tree rooted at non-terminal v covering partial observations
0;,...,0;. In order to recursively find the best alignment,
three essential steps are involved from bottom to top.

Initialization fori =1toL,v € N
a(iyi,v) = max {log p(t|v) + logf(oi[t)}
where L is the length of the observations O.

Iteration fori =1toL—1,5=4i+1toL,andv € N

. j—1
a(i, j,v) = max max
Yz k=i
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Termination The iteration will eventually cover the entire
observations as well as the complete grammar. The
best alignment 7 will be given as,

P(0,#|G) = a1, L, S)
where S is the start non-terminal of the model.

5.2. Tactic LCFG

A sports tactic is a concept composed of a hierarchi-
cally connected sequence of athlete formations and trajec-
tory states. The behaviors of the athletes vary dramatically,
but they are guided by the logics of the intended tactics. In
order to emphasize such consecutive logical process, we use
LCFG as a syntactic method to model the behaviors of these
athletes.

Take pick-and-roll as an example, we could use the fol-
lowing context-free rules to describe the tactic.

PR — Pick Roll [1.0]

Pick — picker block [1.0]
picker — picker [p] | v [1 — p]
block — block [p] | v [1 — p]

Roll — roll [p] | v [1 —p]

Fig.6 shows the hierarchy when LCFG is applied on a
specific sports tactic. The lower level features are essen-
tially from raw trajectories. The latent level composes of
many discriminative features which are designed based on
basketball domain knowledge. By applying this model, we
can resolve the ambiguity among the latent states from tra-
jectories while preserving the high level logic through the
syntactic tree structure.

Tactic

Feature

Figure 6. LCFG model for pick-and-roll tactic

Similar to Viterbi decoding in HMM, under LCFG, the
most-likely interpretations will be constructed from the
probabilistic parsing tree through the modified CYK algo-
rithm. Beyond the one dimensional relationship in HMMs,

the LCFG parsing tree encapsulates rich hierarchical infor-
mation containing the relationships of concepts and sub-
concepts relationship as well as the interpretation likeli-
hood.

Specifically in this work, the sports tactics can be effec-
tively identified based on the pre-defined tactic features and
grammar rules. The issues of ambiguity and the syntactic
restrictions are simultaneously addressed, and the proposed
LCFG is able to quantitatively seek the best interpretation
among all possibilities.

6. Experimental Results

Our data set is collected from various sources. Most of
them came from an entire commercial broadcasting basket-
ball video (NBA - 2014 Miami Heat vs San Antonio Spurs)
on YouTube. In order to evaluate our approach, we pre-
separate the data into video chunks by adopt the method
used in [14]. And the initial court and athlete key points are
also manually provided.

6.1. Tracking Results

The actual sports videos vary significantly. Thus there
is no single perfect detection and tracking method exists.
The purpose of athlete tracking in this experiment is to sup-
port high level tactic recognition. So to keep the computa-
tion simple, we use color histogram and mean-shift track-
ing method to obtain the trajectories of athletes. In Fig.7,
four identified athletes are acting pick-and-roll tactic in the
game. Their trajectories are mapped into the absolute court
space.

6.2. Tactics Recognition

Based on the athletes tracking results, we apply the pro-
posed tactic LCFG method to parse the video sequence. The
classical pick-and-roll tactics can be decomposed through
the following list of context-free rules,

S — NULLPR [1.0]
PR — NTI Roll [1.0]
NTl — Pick Block [1.0]

NULL — Null NULL [1.0] | Null [¢]
Pick — pick Pick [1.0] | pick [¢]

Block — block Block [1.0] | block [¢]
Roll — defMiss Roll [0.5] | defMiss [¢]
Roll — defGood Roll [0.5] | defGood [e]
pick — pick0 [0.5] | pickl [0.5]

Except the non-terminal symbols on the left-hand side, each
terminal symbol corespondents to a discriminative tactic
feature. The feature pickO and pickl denote the actual picker
selection in the sequence. We also define a NULL state to
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687 blocking the way of the defender. It is based on the aver- tics. This framework is able to address two major chal- 741
688 age Euclidean distances between the athletes. lenges in semantic representation. Firstly, to fill the gap be- 742
689 For selected athletes, the input of LCFG are prepared by tween lower level features and higher level concept. In con- 743
690 stacking the absolute trajectories in Euclidean space, and trast to conventional approaches that rely on shallow models 744
691 the relative trajectories in hoop centered polar space to- like HMMs or deeply stacked neural networks, we intro- 745
692 gether. The process of parsing the data in our pick-and-roll duced intermediate discriminative features that can bridge 746
693 LCFG model is shown in Fig.8. Each parsing tree is a self- observations and domain knowledge. Secondly, to repre- 747
694 explaining concept and contains consecutive and hierarchi- sent and extract long-term temporal relationships in a time 748
695 cal structured intermediate states. In Fig.9, the optimal sep- series. In many applications, long term temporal behaviors 749
696 arations along with key-frames, and interpretations differ can not be simply described in first-order statistics. They 750
697 with pickers, and defence variations are extracted through actually follow certain underlying logical order from do- 751
698 our modified CYK parsing methods. main knowledge. Beyond the classical Markov property in 752
699 In our experiments, we parsed 2324 frames among 17 HMM and its extensions, we introduced context-free rules 753
700 video clips. Each clip have different frame length and the to represent these high level logical processes through syn- 754
701 contents differ in the pick-and-roll tactic variations. The tactic tree structures. We evaluated our proposed frame- 755
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Nothing [#0] pickerl [#25]

block [#98]

block [#129]

defence miss [#100] end [#175]

Figure 9. Parsing results with successful [miss defence] pick and roll tactic

pickerl [#

block [#54]

defence [#142 end [#151]

defence [#108]

Figure 10. Parsing results with unsuccessful [defence] pick and roll tactic

work and methodology on real-world basketball video clips.
The experiments results demonstrated the rich representa-
tion and interpretation power of LCFG through the proba-
bilistic parsing trees.
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