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Introduction

Financial time series are well-known non-stationary.

There’s no perfect prediction model for such time series.

A fundamental assumption is that the underlying series are driven by
some hidden control or variables.

A good approximate model should,

demonstrates the hidden effects (state-space model)
provide a good prediction performance (mean square error)
computationally efficient (recursive filtering)

In this project, I will use dynamic state-space system to model the
financial time series, and then use Kalman filter to efficiently make
prediction.
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Review Kalman Filter

Under a Gaussian-Markov state model (u[n] ∼ N (0,Q))

s[n] = As[n − 1] + Bu[n]

and Bayesian linear observation model (w[n] ∼ N (0,C[n]))

x[n] = H[n]s[n] +w[n]

a Kalman filter is a recursive (prediction & correction only use present
input x[n] and previous output ŝ[n − 1|n − 1], K[n] is Kalman Gain 1)

ŝ[n|n − 1] = Aŝ[n − 1|n − 1]

ŝ[n|n] = ŝ[n|n − 1] +K[n](x[n] −H[n]̂s[n|n − 1])

MMSE estimator (M are minimum mean square error matrix).

M[n|n − 1] = AM[n − 1|n − 1]AT + BQB
−1

M[n|n] = (I−K[n]H[n])M[n|n − 1]

1
K[n] = M[n|n − 1]HT[n](C[n] +H[n]M[n|n − 1]HT[n])−1
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Basic Model

In finance, compare to the assets price p, the rate of return r tend to
behavior more stationary. We denote r as

r [n] = log(p[n])− log(p[n − 1])

Although the true value of r [n] is unknown, we could always observer it in
noise market by,

R [n] = r [n] + w [n] w [n] ∼ N (0, σ2
w )

In this project, I will analyzing two models with different assumptions as
follows

r is constant.

r is mean reverting.
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Constant r

We firstly assume the r is constant, then,

r [n] = r [n − 1] + u

We further assume the observation and process noises are WSS
(u ∼ N (0, σ2

u), w ∼ N (0, σ2
w )) and σ2

u ≪ σ2
w .

Recall the Kalman filter discussion, we have

r̂ [n|n − 1] = r̂ [n − 1|n − 1]

M[n|n − 1] = M[n − 1|n − 1] + σ2
u

K [n] =
M[n|n− 1]

σ2
w +M[n|n − 1]

r̂ [n|n] = r̂ [n|n − 1] + K [n](R [n]− r̂ [n|n − 1])

M[n|n] = (1− K [n])M[n|n − 1]
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Constant r - Parameter Estimation

In the above model, we assume σu , σw and µ are constant
parameters.

Now we estimate them from real data.

Recall the Gaussian Linear assumption and σ2
u ≪ σ2

w ,

R ∼ N (r , σ2
w I)

r ∼ N (µ, σ2
uI)

R ∼ N (µ, (σ2
w + σ2

u)I)

R ∼ N (µ, σ2
w I)

The MLE of γ =
[

σw µ
]T

is given by,

argmax
γ

L(γ|R)
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Constant r - Parameter Estimation

R ∼ N (µ, σ2
w I)

log L(γ|R) = log f(R,γ)

= log
exp(−

∑
n
(R[n]−µ)2

2σ2
w

)

(2πσw )N/2

=
N

2
log(2πσ2

w ) +

∑

n
(R [n]− µ)2

2σ2
w

∂ log L(γ|R)

∂µ
=

∑

n
(R [n]− µ)

σ2
w

(set to 0)

µ̂ =
1

N

∑

n

R [n]

= R̄ [n] (MLE of µ)
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Constant r - Parameter Estimation

∂ log L(γ|R)

∂σ2
w

=
N

2σ2
w

−

∑

n
(R [n]− µ)2

2σ4
w

(set to 0)

σ̂2
w =

1

N

∑

n

(R [n]− µ)2

=
1

N

∑

n

(R [n]− R̄[n])2 (MLE of σ2
w )

γ̂ =

[

R̄[n]
1
N

∑

n
(R [n]− R̄ [n])2

]
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Constant Model - Application

Exxon Mobil Corporation(NYSE:XOM) historical daily price and
return from 2008-01-23 to 2012-04-26.

Use first 80% data to find the MLE of γ =
[

0.003936% 0.0435%
]T

.
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Constant Model - Application

Use latest 20% data to recursively evaluate the r̂ [n|n − 1].
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Mean-reverting Model

Now we relax r ’s constant assumption.

Let us assume E(rn) = µ, and r is mean-reverting.

rn − rn−1 = α(µ− rn−1) + u

Then the state space model will be given by

rn = (1− α)rn−1 + αµ + u

E(r) = µ

var(r) =
σ2
u

2α − α2

The observation model will be given by

Rn = rn + w
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Mean-reverting Model - 100 sample simulation

µ = 0.1 σ2
u = 0.1
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Mean-reverting Model - Parameter Estimation

In the above model, we assume the α, σw , σu and µ are unknown
constant parameters.

According to the linear Gaussian assumption,

Rn = rn + w

= (1− α)rn−1 + αµ + u + w

= (1− α)(Rn−1 − w) + αµ+ u + w

= (1− α)Rn−1 + αµ+ u + αw

which shows Rn is an autoregressive process AR(1).

We would like to obtain the MLE of γ =
[

α σ2
w σ2

u µ
]T

,

argmax
γ

L(γ|R)
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Mean-reverting Model - Conditional MLE

Rn|Rn−1 ∼ N ((1− α)Rn−1 + αµ, σ2
u + α2σ2

w )

f(Rn|Rn−1,γ)

=
1

√

2π(σ2
u + α2σ2

w )
exp(−

(Rn − (1− α)Rn−1 − αµ)2

2(σ2
u + α2σ2

w )
)

log(f(Rn|Rn−1,γ))

=−
log(2π(σ2

u + α2σ2
w ))

2
−

(Rn − (1− α)Rn−1 − αµ)2

2(σ2
u + α2σ2

w )
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Mean-reverting Model - Marginal MLE

Recall R is a stationary AR(1) process, we can assume R1 as,

E[R1] = µ var[R1] =
σ2
u + α2σ2

w

2α − α2

R1 ∼ N

(

µ,
σ2
u + α2σ2

w

2α− α2

)

f(R1,γ) =

(

2π(σ2
u + α2σ2

w )

2α− α2

)

−1/2

exp

(

−
(R1 − µ)2(2α − α2)

2(σ2
u + α2σ2

w )

)

log(f(R1,γ)) = −
1

2
log

(

2π(σ2
u + α2σ2

w )

2α− α2

)

−
(R1 − µ)2(2α− α2)

2(σ2
u + α2σ2

w )
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Mean-reverting Model - Exact MLE

f(Rn, . . . ,R1|γ) = f(R1,γ)

n
∏

t=2

f (Rn|Rn−1,γ)

log L(γ|R) = log f(R1,γ) +

n
∑

t=2

log f(Rt |Rt−1,γ)

= −
1

2
log

(

2π(σ2
u + α2σ2

w )

2α− α2

)

−
(R1 − µ)2(2α − α2)

2(σ2
u + α2σ2

w )

−
n

∑

t=2

(

log(2π(σ2
u + α2σ2

w ))

2
+

(Rt − (1− α)Rt−1 − αµ)2

2(σ2
u + α2σ2

w )

)

=
log(2α− α2)

2
−

n

2
log(2π(σ2

u + α2σ2
w ))−

(R1 − µ)2(2α− α2)

2(σ2
u + α2σ2

w )

−
1

2(σ2
u + α2σ2

w )

n
∑

t=2

(Rt − (1− α)Rt−1 − αµ)2
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Mean-reverting Model - Kalman filter

Notice that the log-likelihood function log L(γ|R) is a non-linear function,
so there’s no exact analytical solution for MLE γ̂. here we use numerical
method,

arg max
γ

log L(γ|R)

We then use MLE γ to configure a Kalman filter.

r̂ [n|n − 1] = (1− α̂)r̂ [n − 1|n − 1] + α̂µ̂

M[n|n − 1] = (1− α̂)2M[n − 1|n − 1] + σ̂2
u

K [n] =
M[n|n− 1]

σ̂2
w +M[n|n − 1]

r̂ [n|n] = r̂ [n|n − 1] + K [n](R [n]− r̂ [n|n − 1])

M[n|n] = (1− K [n])M[n|n − 1]
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Mean-reverting Model - 100 sample simulation

µ = 0.1 σ2
u = 0.1 σ2

w = 0.01 α = 1.4
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Mean-reverting Model - Application

Exxon Mobil Corporation(NYSE:XOM) historical daily price and
return from 2008-01-23 to 2012-04-26.

Use first 80% data to find the MLE of
γ =

[

1.211 5.66 × 10−4% 4.15% 3.17 × 10−3%
]T

.
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Mean-reverting Model - Application

Use latest 20% data to recursively evaluate the r̂ [n|n − 1].
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Constant versus Mean-reverting Model

Mean-reverting model have better tracking error performance,
especially when price change dramatically.
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Summary

The financial time series in real applications are always non-stationary.
So there’s no perfect model can fit them well.

I assume the daily return series are stationary, and thus using two
state space model (constant and time-reverting) to model it
separately.

Both models’ parameters were estimated (analytically or numerically)
through maximizing its likelihood function.

Then based on the parameters, a configured Kalman filter is used to
recursively predict and correct the underlying series.

Not surprisingly, a more complicated mean-reverting model have
better prediction performance than the constant one.
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