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Introduction

Financial time series are well-known non-stationary.

There's no perfect prediction model for such time series.

A fundamental assumption is that the underlying series are driven by
some hidden control or variables.

(]

A good approximate model should,
@ demonstrates the hidden effects (state-space model)
o provide a good prediction performance (mean square error)
e computationally efficient (recursive filtering)

(]

In this project, | will use dynamic state-space system to model the
financial time series, and then use Kalman filter to efficiently make
prediction.
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Review Kalman Filter

@ Under a Gaussian-Markov state model (u[n] ~ N (0, Q))
s[n] = As[n — 1] + Bu[n]
@ and Bayesian linear observation model (w[n] ~ A (0, C[n]))
x[n] = H[n]s[n] + w(n]
@ a Kalman filter is a recursive (prediction & correction only use present
input x[n] and previous output §[n — 1|n — 1], K[n] is Kalman Gain 1)
§[njn—1] = AS[n—1|n—1]

S[n[n] = 8[n|n — 1] + K[n](x[n] — H[n]8[n|n —1])
@ MMSE estimator (M are minimum mean square error matrix).

M[njn—1] = AM[n—1|n—1]AT + BQB™!

Min[n] = (I —K[n]H[n])M[n[n —1]

'K[n] = Mn|n — 1JHT[n](C[n] + H[n]M[n|n — 1]HT[n])-"
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Basic Model

In finance, compare to the assets price p, the rate of return r tend to
behavior more stationary. We denote r as

rn] = log(p[n]) — log(p[n —1])

Although the true value of r[n] is unknown, we could always observer it in
noise market by,

R[n] = r[n] + w[n] w[n] ~ N(0,02)

In this project, | will analyzing two models with different assumptions as
follows
@ r is constant.

@ r is mean reverting.
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Constant r

We firstly assume the r is constant, then,
rlnl]=rln—1]+u
We further assume the observation and process noises are WSS

(u~N(0,02), w ~ N(0,02)) and 02 < 02,.
Recall the Kalman filter discussion, we have

Plnln—1] = ?[n—1jn—1]
Minln—1] = M[n—1ln—1]+ 02
Kl = M[n|n —1]

02, + M[n|n —1]
Plnln] = ?[n|n — 1] + K[n](R[n] — ?[n|n — 1])
M[n|n] = (1 — K[n])M[n|n —1]
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Constant r - Parameter Estimation

@ In the above model, we assume o, o, and u are constant
parameters.

@ Now we estimate them from real data.

@ Recall the Gaussian Linear assumption and 02 < 02,

R ~ N(r,a2l)
ro~ N(uo2l)
R ~ N(u, (o +o))
R ~ N(u,ad2l)

@ The MLE of ~v = [O'W ,u] Tis given by,

arg max L(v|R)
¥
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Constant r - Parameter Estimation

log L([R)

dlog L(v|R)
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Constant r - Parameter Estimation

dlog L(v|R) N 3 a(RIn] — p)?
o2, - 202, 208, (set to 0)

%= (Rl )’

_ %Z(R[n]—f_?[n]f (MLE of 02

¥ o= [% Zn(RF[?rE]n]— R’[n])%
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Constant Model - Application

@ Exxon Mobil Corporation(NYSE:XOM) historical daily price and
return from 2008-01-23 to 2012-04-26.

@ Use first 80% data to find the MLE of v = [0.003936% 0.0435%|
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Constant Model - Application

@ Use latest 20% data to recursively evaluate the ?[n|n — 1].
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Mean-reverting Model

@ Now we relax r’s constant assumption.

@ Let us assume E(r,) = p, and r is mean-reverting.
fn—rth—1 = o(pp—rp1)+u

@ Then the state space model will be given by

rm = (l—a)m_1+ap+u
E(r) = u
o2
varlr) = -2

@ The observation model will be given by

Rpo=r+w
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Mean-reverting Model - 100 sample simulation
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Mean-reverting Model - Parameter Estimation

@ In the above model, we assume the «, o, 0, and p are unknown
constant parameters.

@ According to the linear Gaussian assumption,

R, = m+w
l-a)ma+op+ut+w
(I1-a)Rpm1 —w)+ap+u+w
(1-a)Rp—1+ap+u+aw

which shows R, is an autoregressive process AR(1).

@ We would like to obtain the MLE of v = [a A

arg max L(v|R)
¥
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Mean-reverting Model - Conditional MLE

RolRo—1 ~ N((1 — @)Rn_1 + ap, 02 + a?02)

f(Rn|Rn—1)’Y)
1 (Ry— (1 — a)Rn_1 — au)?
eXpl— 2 0252
2m(02 + ao2) 2(02 + a?02)

)

Iog(f(Rn|Rn—la'7))
o log(27(02 + a?02))  (Rn— (1 —a)R,_1 — ap)?

2 2(02 + 0202)
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Mean-reverting Model - Marginal MLE

Recall R is a stationary AR(1) process, we can assume R; as,

02 1 0252
EIR] = Ril]=24 — W
(Rl =n  varlRi] = ————
02 1 202
R ~ u w
1~ N ('u’ 200 — o2 >
R = (2R @?a) (R pP(20 —a?)
LY = 2 — a? P 2(02 + a?02)
1 27(02 + o202, (R1 — 1)?(2a — a?)
log(f(R1,7)) = 2 log < 200 — a? > B 2(02 + a?02)
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Mean-reverting Model - Exact MLE

f(Rm SRR R1|’Y) = f(Rl)’Y) H f(Rn|Rn—177)
t=2

log L(v|R) = log f(R1,7) + > _ log f(Re|Re-1,7)
t=2

1 | 2n(0? + a?02)) (R1 — u)?(2a — a?)
= —— 10 —_
2 %8 2 — a? 2(02 + a?02)

B z": <Iog(27r(a + a?02)) N (Re—(1—a)Re—1 — au)2>

2 2(02 + a202))

t=2

log(2a — o? (R Ra ol

_M_ﬁlog(Qw(a +a’0y,)) ( 12( 5)4_( 252) :
02+ o202,

2 2
a2+a2a2 ZR'-“ l—aRtl—au)
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Mean-reverting Model - Kalman filter

Notice that the log-likelihood function log L(+|R) is a non-linear function,
so there's no exact analytical solution for MLE 4. here we use numerical

method,

arg maxlog L(~y|R)
¥

We then use MLE -~ to configure a Kalman filter.

Plnln—1] = (1 —@&)*n—1n—1]+an
Mlnln—1] = (1—a&)>*M[n—1|n—1]+ &7
M[n|n — 1]
Kl = o M — 1]
w
Flnln] = Fln|n — 1] + K[n](R[n] — F[n|n —1])
M[n|n] = (1 — K[n])M[n|n —1]
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Mean-reverting Model - 100 sample simulation
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Mean-reverting Model - Application

@ Exxon Mobil Corporation(NYSE:XOM) historical daily price and
return from 2008-01-23 to 2012-04-26.

o Use first 80% data to find the MLE of

y=[1211 5.66 x107*% 4.15% 3.17 x 1073%
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Mean-reverting Model - Application

@ Use latest 20% data to recursively evaluate the ?[n|n — 1].
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Constant versus Mean-reverting Model

@ Mean-reverting model have better tracking error performance,
especially when price change dramatically.
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Summary

@ The financial time series in real applications are always non-stationary.
So there’s no perfect model can fit them well.

@ | assume the daily return series are stationary, and thus using two
state space model (constant and time-reverting) to model it
separately.

@ Both models’ parameters were estimated (analytically or numerically)
through maximizing its likelihood function.

@ Then based on the parameters, a configured Kalman filter is used to
recursively predict and correct the underlying series.

@ Not surprisingly, a more complicated mean-reverting model have
better prediction performance than the constant one.
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